Extensions 1→N→G→Q→1 with N=C22 and Q=C6×C3⋊S3

Direct product G=N×Q with N=C22 and Q=C6×C3⋊S3
dρLabelID
C3⋊S3×C22×C6144C3:S3xC2^2xC6432,773

Semidirect products G=N:Q with N=C22 and Q=C6×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C22⋊(C6×C3⋊S3) = C6×C3⋊S4φ: C6×C3⋊S3/C3×C6S3 ⊆ Aut C22366C2^2:(C6xC3:S3)432,761
C222(C6×C3⋊S3) = C2×A4×C3⋊S3φ: C6×C3⋊S3/C2×C3⋊S3C3 ⊆ Aut C2254C2^2:2(C6xC3:S3)432,764
C223(C6×C3⋊S3) = C3×D4×C3⋊S3φ: C6×C3⋊S3/C3×C3⋊S3C2 ⊆ Aut C2272C2^2:3(C6xC3:S3)432,714
C224(C6×C3⋊S3) = C6×C327D4φ: C6×C3⋊S3/C32×C6C2 ⊆ Aut C2272C2^2:4(C6xC3:S3)432,719

Non-split extensions G=N.Q with N=C22 and Q=C6×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C22.1(C6×C3⋊S3) = C3×C12.D6φ: C6×C3⋊S3/C3×C3⋊S3C2 ⊆ Aut C2272C2^2.1(C6xC3:S3)432,715
C22.2(C6×C3⋊S3) = C3×C12.59D6φ: C6×C3⋊S3/C32×C6C2 ⊆ Aut C2272C2^2.2(C6xC3:S3)432,713
C22.3(C6×C3⋊S3) = C12×C3⋊Dic3central extension (φ=1)144C2^2.3(C6xC3:S3)432,487
C22.4(C6×C3⋊S3) = C3×C6.Dic6central extension (φ=1)144C2^2.4(C6xC3:S3)432,488
C22.5(C6×C3⋊S3) = C3×C12⋊Dic3central extension (φ=1)144C2^2.5(C6xC3:S3)432,489
C22.6(C6×C3⋊S3) = C3×C6.11D12central extension (φ=1)144C2^2.6(C6xC3:S3)432,490
C22.7(C6×C3⋊S3) = C3×C625C4central extension (φ=1)72C2^2.7(C6xC3:S3)432,495
C22.8(C6×C3⋊S3) = C6×C324Q8central extension (φ=1)144C2^2.8(C6xC3:S3)432,710
C22.9(C6×C3⋊S3) = C3⋊S3×C2×C12central extension (φ=1)144C2^2.9(C6xC3:S3)432,711
C22.10(C6×C3⋊S3) = C6×C12⋊S3central extension (φ=1)144C2^2.10(C6xC3:S3)432,712
C22.11(C6×C3⋊S3) = C2×C6×C3⋊Dic3central extension (φ=1)144C2^2.11(C6xC3:S3)432,718

׿
×
𝔽